PHSGDSE04T - Nuclear and Particle Physics

Nuclear And Particle Physics	
75 Lectures	6 Credits
Preliminary Topics	3 Lectures
Review of mass-energy equivalence, quantum semiconductors.	tunnelling. Qualitative discussion on properties of

General Properties of Nuclei

Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models

Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model, concept of mean field, residual interaction, concept of nuclear force.

Radioactivity decay

(a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law, α decay spectroscopy. (b) -decay: energy kinematics for -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.

Nuclear Reactions

Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction, Coulomb scattering(Rutherford scattering).

Interaction of Nuclear Radiation with matter

Energy loss due to ionization (Bethe- Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction

11 Lectures

8 Lectures

8 Lectures

10 Lectures

9 Lectures

with matter.

Detector for Nuclear Radiations

Basic principles of ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators

Linear accelerator, Cyclotron, Synchrotrons.

Particle physics

Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quark model, color quantum number and gluons.

Reference Books

- Nuclear Physics. J.S. Lilley, 2001, John Wiley & Sons.
- Nuclear and Particle Physics. B.R. Martin, 2006, John Wiley & Sons.
- Nuclear and Particle Physics, W.F. Burcham and M. Jobes, 1995, Pearson.
- An Introduction to Nuclear Physics. W. N. Cottingham and D.A. Greenwood, 2004, Chambridge.
- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
- Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
- Basic ideas and concepts in Nuclear Physics An Introductory Approach by
- K. Heyde (IOP- Institute of Physics Publishing, 2004).
- Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).

7 Lectures

14 Lectures

5 Lectures