

WEST BENGAL STATE UNIVERSITY

B.Sc. Programme 5th Semester Examination, 2020, held in 2021

PHSGDSE01T-PHYSICS (DSE1)

DIGITAL, ANALOG CIRCUITS AND INSTRUMENTATION

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Question No. 1 is compulsory and answer any two from the rest

1. Answer any *ten* questions from the following:

 $2 \times 10 = 20$

নিম্নলিখিত যে-কোনো দশটি প্রশ্নের উত্তর দাওঃ

- (a) Simplify the Boolean expression: $\overline{AB} + \overline{A} + AB$ বুলিয়ান রাশিরূপের সরলীকরণ করোঃ $\overline{AB} + \overline{A} + AB$
- (b) Convert the decimal number (225.225)₁₀ to binary. ডেসিমাল সংখ্যা (225.225)₁₀–কে বাইনারি সংখ্যায় রূপান্তরিত করো।
- (c) Write the Boolean expression for a 3-input NOR gate. Draw the logic symbol for a 3-input NOR gate.
 - 3-ইনপুট NOR গেটের জন্য বুলিয়ান এক্সপ্রেশন লেখো। 3-ইনপুট NOR গেটের লজিক প্রতীকটি আঁকো।
- (d) Using NAND and NOT gates, draw a logic diagram that will perform as a 2-input OR gate (use De Morgan theorem).
 - NAND ও NOT গেটের সাহায্যে একটি লজিক ডায়াগ্রাম আঁকো যা 2-ইনপুট OR গেটের কাজ করবে (ডি-মরগান উপপাদ্য ব্যবহার করো)।
- (e) What are the fundamental differences between class A and class C amplifiers?

 A-শ্রেণি এবং C-শ্রেণির বিবর্ধকের মধ্যে মৌলিক পার্থক্যগুলি কী কী ?
- (f) What do you mean by static resistance and dynamic resistance of a *p-n* junction diode?
 - p-n সংযোগ ডায়োড-এর স্থির রোধ এবং গতিশীল রোধ বলতে কী বোঝো ?
- (g) Design an OPAMP based inverting amplifier having a gain of -10 and input resistance of $1\,\mathrm{k}\,\Omega$.
 - $1\,\mathrm{k}\,\Omega$ ইনপুট রোধ এবং -10 বিবর্ধন বিশিষ্ট একটি OPAMP –ভিত্তিক ইনভার্টিং বিবর্ধক তৈরি করো।

CBCS/B.Sc./Programme/5th Sem./PHSGDSE01T/2020, held in 2021

(h) Determine which of the diodes in the Figure 1 are forward biased and which ones are reverse biased.

Figure 1-এর ডায়োডগুলির মধ্যে কোনটি সম্মুখ বায়াস-এ এবং কোনটি বিপরীত বায়াস-এ রয়েছে তা নির্ধারণ করো।

Figure 1

- (i) State the Barkhausen criterion for oscillators.
 - স্পন্দকের জন্য বার্কহাইসেন-এর শর্ত বিবৃত করো।
- (j) What is the utility of calculating CMRR of an OPAMP?

 OPAMP -এর CMRR গণনা করার প্রয়োজনীয়তা কী ?
- (k) What is early effect?
 Early -ক্রিয়া বলতে কী বোঝায় ?
- (l) Explain the idea of 'Virtual ground' in connection with an OPAMP.

 OPAMP সম্বন্ধীয় 'Virtual ground'-এর ধারণা ব্যাখ্যা করো।
- (m) Draw the volt-ampere characteristics of a photo diode. ফোটো ডায়োড-এর ভোল্ট-অ্যাম্পিয়ার লেখচিত্র অঙ্কন করো।
- (n) What is the use of a filter in a rectifier circuit?

 একমুখীকারক (rectifier) বর্তনীতে ফিলটার-এর ব্যবহার কী ?
- 2. (a) Write the Boolean expression for the logic circuit shown in Figure 2. Construct the truth table for the logic circuit shown in Figure 2.

Figure 2-তে প্রদর্শিত লজিক বর্তনীর জন্য বুলিয়ান রাশিরূপটি লেখো। Figure 2-তে প্রদর্শিত লজিক বর্তনীর জন্য 'ট্রুথ টেবিল' লেখো।

5

2

(b) Find the binary sums of (1101)₂ and (111)₂. Draw the logic diagram of a full adder using AND, XOR, and OR gates.

(1101)₂ এবং (111)₂-এর বাইনারি যোগফল নির্ণয় করো। AND, XOR এবং OR গেট ব্যবহার করে একটি 'ফুল অ্যাডার'-এর লজিক চিত্র অঙ্কন করো।

3. For the circuit given in Figure 3, the voltage at the emitter was measured and found 2+2+2+2 to be -0.7 V. If $\beta = 50$ for the transistor, find I_E , I_B , I_C , V_C and V_{CE} .

Figure 3-এ প্রদত্ত বর্তনীর জন্য, এমিটারের ভোল্টেজ পরিমাপ করা হয়েছে এবং এটি $-0.7~{
m V}$ । ট্রানজিস্টর-এর $oldsymbol{eta}$ যদি 50 হয় তবে $I_E,\,I_B,\,I_C,\,V_C$ এবং V_{CE} নির্ণয় করো।

4. (a) Write down the characteristics of an ideal OPAMP.

আদর্শ OPAMP -এর বৈশিষ্ট্যসমূহ উল্লেখ করো।

(b) For the circuit given in Figure 4, find the values of i_l , v_1 , i_1 , i_2 , v_0 and i_L .

1+1+1+2

Figure 4-এ প্রদত্ত সার্কিটের জন্য i_l , v_1 , i_1 , i_2 , v_0 এবং i_L –এর মানগুলি নির্ণয় করো।

Figure 4

2

2+3

5. (a) In the circuit of Figure 5, the supply voltage $V_b = 12V$. The 9.6 V, 0.40 W Zener diode operates at a minimum diode current of 5 mA. Calculate the series resistance R_S and the range over which the load resistance R_L can be varied.

Figure 5-এ উৎস-ভোল্টেজ $V_b=12V$ । $9.6~{
m V},~0.40~{
m W}$ জেনার ডায়োড-টি ন্যূনতম $5~{
m mA}$ প্রবাহমাত্রার জন্য কার্যকর থাকে। শ্রেণি সমবায় রোধ R_S –এর মান এবং লোড-রোধ R_L –এর পরিবর্তনের সীমা নির্ণয় করো।

Figure 5

(b) In Figure 6, applied voltage signal $v_S = v_m \sin \omega t$ and the diode is ideal. Calculate the average value of output voltage signal v_L . Find the voltage regulation of the half-wave rectifier.

Figure 6-এ প্রযুক্ত ভোল্টেজ সিগন্যাল $v_S = v_m \sin \omega t$ এবং ডায়োডটি আদর্শ। আউটপুট ভোল্টেজ সিগন্যাল v_L এর গড় মান গণনা করো। অর্ধ-তরঙ্গ একমুখীকারক (rectifier)–এর ভোল্টেজ রেগুলেশন নির্ণয় করো।

Figure 6

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

~

3+3

4